Zum Inhalt springenZur Suche springen

Welcome to the Institute for Molecular pathogenicity

HOME  |  TEAM  |  RESEARCH  |  PUBLICATIONS  |  TEACHING


PUBLICATIONS

Google Scholar

 

2024

Weismehl M, Chu X, Kutsch M, Lauterjung P, Herrmann C, Kudryashev M, Daumke O (2024) Structural insights into the activation mechanism of antimicrobial GBP1. EMBO J 43: 615-636; Link

 

2023

Dickinson MS*, Kutsch M*, Sistemich L, Hernandez D, Piro AS, Needham D, Lesser CF, Herrmann C, Coers J (2023) LPS-aggregating proteins GBP1 and GBP2 are each sufficient to enhance Caspase-4 activation both in cellulo and in vitro. Proc Natl Acad Sci U S A 120: e2216028120; *co-first authors; Link

 

2022 

Walsh SC, Reitano JR, Dickinson MS, Kutsch M, Hernandez D, Barnes AB, Schott BH, Wang L, Ko DC, Kim SY, Valdivia RH, Bastidas RJ, Coers J (2022) The bacterial effector GarD shields Chlamydia trachomatis inclusions from RNF213-mediated ubiquitylation and destruction. Cell Host Microbe 30(12):1671-1684.e9; Link 

 

2021

Ince S, Zhang P, Kutsch M, Krenczyk O, Shydlovskyi S, Herrmann C (2021) Catalytic activity of human guanylate-binding protein 1 coupled to the release of structural restraints imposed by the C-terminal domain. FEBS J 288:582-599; Link

Kutsch M, Gonzalez-Prieto C, Lesser CF, Coers J (2021) The GBP1 microcapsule interferes with IcsA-dependent septin cage assembly around Shigella flexneri. Pathog Dis 79:ftab023; Link

Sistemich L, Dimitrov Stanchev L, Kutsch M, Roux A, Gunther Pomorski T, Herrmann C (2021) Structural requirements for membrane binding of human guanylate-binding protein 1. FEBS J 288:4098-4114; Link 

 

2020

Finethy R, Dockterman J, Kutsch M, Orench-Rivera N, Wallace GD, Piro AS, Luoma S, Haldar AK, Hwang S, Martinez J, Kuehn MJ, Taylor GA, Coers J (2020) Dynamin-related Irgm proteins modulate LPS-induced caspase-11 activation and septic shock EMBO reports 21:e50830; Link

Kohler KM*, Kutsch M*, Piro AS*, Wallace GD, Coers J, Barber MF (2020) A Rapidly Evolving Polybasic Motif Modulates Bacterial Detection by Guanylate Binding Proteins. mBio 11:e00340-00320; *co-first authors; Link

Kutsch M and Coers J (2020) Human guanylate binding proteins: nanomachines orchestrating host defense. FEBS J 288(20):5826-5849;  *co-corresponding authors; Link

Kutsch M, Sistemich L, Lesser CF, Goldberg MB, Herrmann C, Coers J (2020) Direct binding of polymeric GBP1 to LPS disrupts bacterial cell envelope functions. EMBO J 39:e104926; Link 

Sistemich L, Kutsch M, Hamisch B, Zhang P, Shydlovskyi S, Britzen-Laurent N, Sturzl M, Huber K, Herrmann C (2020) The Molecular Mechanism of Polymer Formation of Farnesylated Human Guanylate-binding Protein 1. J Mol Biol 432:2164-2185; Link 

 

2018 

Kutsch M, Ince S, Herrmann C (2018) Homo and hetero dimerisation of the human guanylate-binding proteins hGBP-1 and hGBP-5 characterised by affinities and kinetics. FEBS J 285:2019-2036; Link

 

2017

Ince S*, Kutsch M*, Shydlovskyi S, Herrmann C (2017) The human guanylate-binding proteins hGBP-1 and hGBP-5 cycle between monomers and dimers only. FEBS J 284:2284-2301; *co-first authors; Link

Shydlovskyi S, Zienert AY, Ince S, Dovengerds C, Hohendahl A, Dargazanli JM, Blum A, Gunther SD, Kladt N, Sturzl M, Schauss AC, Kutsch M, Roux A, Praefcke GJK, Herrmann C (2017) Nucleotide-dependent farnesyl switch orchestrates polymerization and membrane binding of human guanylate-binding protein 1. Proc Natl Acad Sci U S A 114:E5559-E5568; Link 

 

2016

Athanasopoulos PS, Jacob W, Neumann S, Kutsch M, Wolters D, Tan EK, Bichler Z, Herrmann C, Heumann R (2016) Identification of protein phosphatase 2A as an interacting protein of leucine-rich repeat kinase 2. Biological Chemistry 397:541-554; Link

Kutsch M, Hortmann P, Herrmann C, Weibels S, Weingärtner H. (2016) Dissecting ion-specific from electrostatic salt effects on amyloid fibrillation: A case study of insulin. Biointerphases 11:019008; Link 

Verantwortlichkeit: